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In-silico plasma protein binding (PPB) models have been generated on human and rat in-house datasets,
and on a human dataset sourced from the literature. From the results reported herein, it is apparent that
models built on datasets relevant to the chemotypes under investigation in lead optimization programs will
perform considerably better in this role than those generated on diverse compounds sourced from the literature.
The in-house human and rat partial least-squares regression (PLS) models have cross-validatedq2 values of
0.53 and 0.42 on the training sets, respectively. On the independent test and validation sets, they display
similar predictive ability, with logK prediction errors of∼0.5 log units. This compares to∼0.25 log units
variability expected for experiment. Given the considerable interspecies PPB differences, the prediction of
PPB in one species using measurements in the other is no better than a prediction from an in-silico model
generated on that species.

1.0. Introduction

Plasma protein binding (PPB) is an important biological
property that can have implications for a number of toxicologi-
cal, pharmacological, and pharmacokinetic parameters. The
fraction of drug unbound in plasma is considered to be the most
important for biological effects given it is only the free drug
that can elicit a pharmacological response. The free fraction is
equally important for toxicological reasons since reduced PPB,
which is known to occur in infants and certain disease states,1,2

could potentially lead to plasma levels above the maximum
tolerated dose.

Pharmacokinetic and pharmacodynamic properties heavily
depend on PPB. Using the well-stirred model,3 the in vivo
hepatic clearance (ClH) can be obtained from intrinsic clearance
(ClI) and the fraction unbound in plasma (fup) (eq 1), where
QH refers to the liver blood flow of the species in question.
The apparent volume of distribution at steady state (Vss) is also
dependent on PPB according to the Gillette equation4 (eq 2).
This is expressed using the volume of the plasma compartment
(Vp), the volume of the tissue compartment (Vt), and the fraction
unbound in both plasma and tissue (fut).

Highly protein bound drugs have extra developmental hurdles,
with the FDA requiring additional studies. This of course is
because small changes in the %bound can have a significant
impact on free fraction of drug in the body. For example, the
4% difference between 99% bound and 95% bound corresponds
to a 5-fold difference in the %free, whereas the 4% difference
between 80% bound and 76% bound is only a 1.2-fold
difference. Given the obvious importance of PPB in drug
discovery, it would be extremely useful to be able to rapidly

estimate or rank the extent of binding to plasma proteins early
in the life of a discovery program.

A number of groups have investigated the statistical relation-
ship between molecular structure/properties and human serum
albumin binding5,6 and to the more physiological relevant whole
plasma.7-9 The latter matrix contains multiple proteins, including
the two most abundant albumin and alpha glycoprotein. A
common feature of these analyses was the relatively small,
primarily literature based datasets employed, derived from a
variety of laboratories, from different assay types (A description
of these techniques can be found in the following references:
equilibrium dialysis,10 ultrafiltration,11 and HPLC12). Further-
more, the datasets used consisted of primarily marketed
compounds that are not necessarily ideal to develop models to
predict the current generation of hits and leads under investiga-
tion within the pharmaceuticals industry due to the considerable
differences in molecular properties.13,14

The binding of large numbers of compounds to plasma have
been determined in GSK as part of ongoing lead optimization
efforts. These measurements are predominantly performed using
an equilibrium dialysis assay, in either plasma and to a lesser
extent whole blood, as well as a number of preclinical species,
including human, rat, dog, and guinea pig. This gives us a unique
opportunity to study the relationship between PPB and molecular
structure, as well as any differences that arise between species,
using a dataset that will give statistically meaningful results.
The study reported here is limited to equilibrium dialysis data
in rat and human as these represent the two most important,
most frequently assayed species. Data from the paper of
Yamakazi et al.8 were used for the purpose of comparison.
Univariate and multivariate statistical methods were considered
for the analyses so as to afford a set of simple, generic rules to
reduce PPB, as well as a more complex in-silico model to predict
the extent of binding or at least to provide a rank ordering of
compounds from individual program series.

For a QSAR/QSPR model to be applied with any confidence,
it must demonstrate a predictive ability on an independent test
set of compounds not used in the building of the model.
However, a random or factorially selected test set is not the
most effective measure of a model’s performance since it is
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essentially a mirror image of the original training set. A more
challenging temporal validation set is used for the models built
in GSK, collected for at least 6 months after the model was
completed. This is generally a more effective measure of the
model performance because new drug discovery programs come
on line periodically, and the chemical space of existing programs
typically increases as teams try to optimize their leads to obtain
more potent, selective, less liable compounds. Finally, a
consideration of how the similarity of a query compound
compares to those used to build the model (i.e., the distance to
model) and its relationship with the prediction error is assessed.
This can provide useful information on how well one might
expect the model to perform on data that are found far from
the training set chemical space.

2.0. Results and Discussion

2.1. Univariate Analysis Results.It has been reported in
certain literature sources that protein binding to plasma7,8 or
human serum albumin (HSA)5,6 is heavily influenced by the
logP/logD term. In another the term is said to be unimportant
globally,9 while in yet another, it is stated to be unimportant
within individual series.15 Less controversial is the finding that
acids are generally more highly bound to plasma proteins than
neutral or basic compounds given the greater concentration of
the fatty acid transporting protein, albumin, compared to alpha
glycoprotein, which generally prefers bases.12 To try to clarify
these reports, the results from the univariate analyses based on
our large, pharmaceutically representative dataset are discussed.

One of the key physicochemical characteristics affecting the
extent of PPB, namely, the ionization state, can be appreciated
from the ANOVA results on 1,435 compounds measured in rat
plasma. Analysis of the mean logK values of the different
ionization states (Figure 1a) reveals that acidic compounds have
considerably higher mean logK values than either neutral,
zwitterionic, or basic compounds. Zwitterionic and neutral
compounds are found to have comparable mean logK values,
although the small number of zwitterions means the 95%
confidence limits in its mean are considerably larger, making
it difficult to say whether there is a real difference between the
two types. Bases make up∼60% of the dataset, and these have
the lowest mean logK of all ionization types. Even though the
mean difference in logK between bases and acids is∼1 log
unit, from the standard deviation of the former compounds, we
can see that in certain circumstances they can have as high an
affinity for plasma proteins as acids (Figure 1b).

The results displayed in Figure 1a,b do not take into account
whether other factors important in protein binding, such as logP,
differ significantly within each ionization group, which could
potentially give rise to misleading results. To answer this
question, the effect of lipophilicity on top ionization state was
assessed (Figure 1c). Increasing lipophilicity leads to an almost
constant increase in the mean logK irrespective of the ionization
type, indicating this parameter has a significant positive effect
on binding. Only for acids in the 3-5 and>5 logP bins does
this constant effect appear to break down. However, again the
95% confidences in the means are quite large for acids as a
result of the relatively small number of observations. Thus, for
a given logP it is apparent that acids are more highly bound to
plasma proteins than neutrals, which are in turn more highly
bound than zwitterions or bases. From Figure 1c, we can see
that zwitterions generally have a lower logK value than neutrals
for a given logP.

The relationship between lipophilicity and PPB for the four
individual ionization states can be displayed in a more traditional

form using linear regression (Figure 2). Of the two lipophilicity
parameters considered, ACD logD at pH 7.4 and ACD logP,
the latter was found to be more strongly related to logK. logP
describes a highly significant portion of the variability in binding
to plasma proteins, ranging from 24% of the total variation for
bases (i.e.,r2 ) 0.24), 27% for neutrals, 38% for acids, and
58% for zwitterions. This compares to just 21% when all
ionization states are considered together. The slopes and
intercepts of the regression lines given in the caption of Figure
2 show that a log unit increase in logP will lead to a similar
increase in logK for acids, bases, and neutral compounds with

Figure 1. (a-c) Relationship between PPB, ionization state, and logP
for all measured compounds in rat. (a) Mean logK values illustrated
by ionization state, (b) distribution of logK values for a given ionization
state, and (c) mean logK values illustrated by ionization state for a
given logP range. The one-way ANOVA results associated with (a)
and the two-way ANOVA results associated with (c) are statistically
significant above the 95% confidence level.32
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slopes of 0.24, 0.23, and 0.26, respectively. The regression line
for the zwitterionic compounds has a markedly different slope
of 0.41, suggesting that a log unit increase in logP will have a
greater effect on the logK. This may be an artifact of the
relatively small dataset (N ) 58), even taking into account the
larger 95% confidence intervals for the regression line compared
to the other types.

The overall correlation between logP and logK may not seem
particularly strong; however, this is simply a reflection of the
diversity of the dataset and the fact that the binding process is
not controlled by bulk properties alone. For example, multiple
molecules can bind simultaneously to the multiple sites available
on a single albumin protein which we cannot account for. In
fact, lipophilicity as given by ACD logP is found to correlate
more strongly with logK than any of the alternative descriptors
listed in Table 1, and while the correlations observed in Figure
2 may be relatively weak they are all statistically significant
above the 95% confidence level.

To emphasize the importance of lipophilicity, the rat dataset
was broken down by individual program series and reanalyzed.
The program datasets discussed here typically consist of a single
structural template and ionization type (i.e., individual series),
which reduces the likelihood of confounding effects due to
molecular recognition differences or other factors (Table 2 and
Figure 3). In these examples, it is found that ACD logD at pH
7.4 correlates more strongly than ACD logP, possibly as a result
of the subtly differing degrees of ionization found within each
subset. In Table 2, the line of best fit from the relationship
between logK and logD is used to calculate the error in
prediction. One can then use the errors along with ther2 to
assess the importance of logD for each program.

A very strong relationship between logK and the calculated
logD value is found for programs A and B. These are as good
as could be expected given the variability in the experimental
assay (∼0.25 log units), indicating that lipophilicity alone
governs their difference in affinity. One should note that the
RMS error is used here as the primary statistic to assess the
relationships rather than ther2, as the latter is heavily dependent
on the variance of logK values of the particular set being studied
(σY). For example, program F has a larger logK variance than
does E (σY of 0.66 compared to 0.42), yet based on the
relationship as defined with logD one can predict the logK value

of F less accurately than E (0.37 log units vs 0.32) even though
it has the largerr2 (0.68 vs 0.41). For programs C to H, the
rank ordering of compounds using logD is still reasonable;
however, the amount of explainable variance in the observed
value decreases. This is most likely due to different confounding
factors that are not present in programs A and B.

The confounding factors would also help to explain why the
relationship between logD and protein affinity is markedly
different for different programs, as can be seen from the different
slopes and intercepts (Table 2). For example, the regression
results show the logK value of program A (Figure 2a) reduces
by 0.55 log units with a log unit drop in logD, while for program
E (Figure 2b) it is only approximately 0.2 log units. Furthermore,
for a compound with a logP of 0, one finds the predicted
logK value of the program E is 0.88 compared to-0.84 for
program D.

Figure 2. Relationship between rat logK and ACD logP for the four
different ionization states: acid (r2 ) 0.38, intercept (I) ) 1.89, slope
(M) ) 0.09); neutral (r2 ) 0.27,I ) 1.04,M ) 0.16); base (r2 ) 0.24,
I ) 0.54,M ) 0.26); zwitterion (r2 ) 0.53,I ) 0.37,M ) 0.34). For
all ionization states combined (r2 ) 0.24, I ) 0.23, andM ) 0.50).
Regression lines are in red and 95% confidence limits are in blue.

Table 1. Summary of the Descriptors Used in This Study

variable description

abe Andrews binding energy
cmr calculated molecular refractivity
mw molecular weight
tpsa polar surface area (Ertl)
aring no. of aromatic rings
naring no. of nonaromatic rings
hba no. of H-bond acceptors
hbd no. of H-bond donors
neg no. of negatively ionizable/charged groups
pos no. of positively ionisable/charged groups
flex ratio of the number of rotatable bonds

to total bonds
alpha the overall or summation solute hydrogen

bond basicity
betaH the overall or summation solute hydrogen

bond acidity
R2 the excess molar refraction
Pi a combined dipolarity/polarizability descriptor
vx McGowan’s volume
clogp acd calculated ACD logP
%acidic_form % of the molecule in the acidic form at pH 7.4

using ACD pKa
%basic_form % of the molecule in the basic form at pH 7.4

using ACD pKa
%zwitter_form % of the molecule in the zwirtterionic form at

pH 7.4 using ACD pKa
%neutral_form % of the molecule in the neutral form at pH 7.4

using ACD pKa
total_HB sum of H-bond donors and acceptors
total_charge sum of positive and negative charges
%hba % of H-bond acceptors/total number of atoms

in molecule
%hbd % of H-bond donors/total number of atoms in

molecule
logd_pH20_acd calculated ACDlogD at pH) 2.0
logd_pH55_acd calculated ACDlogD at pH) 5.5
logd_pH65_acd calculated ACDlogD at pH) 6.5
logd_pH74_acd calculated ACDlogD at pH) 7.4
logd_pH110_acd calculated ACDlogD at pH) 11.0

Table 2. Relationship between PPB and ACD LogD at pH 7.4 for the
Best Correlating Programsa

program r2 RMSEb σY slope intercept N

A 0.84 0.18 0.47 0.55 -0.42 12
B 0.84 0.24 0.61 0.63 -0.59 30
C 0.62 0.31 0.52 0.40 0.07 18
D 0.67 0.32 0.58 0.52 -0.84 12
E 0.41 0.32 0.42 0.22 0.88 78
F 0.68 0.37 0.66 0.43 -0.08 20
G 0.60 0.49 0.8 0.45 -0.52 16
H 0.45 0.50 0.68 0.37 0.54 38

a Programs are sorted by decreasing prediction error (RMSE) rather than
r2. b Fitted RMSE as calculated from the regression equation.
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2.2. Partial Least-Squares (PLS) Regression Results.To
profile the relationship between the extent of binding and
molecular structure more comprehensively, one must construct
more sophisticated multivariate statistical models that can cope
with multiple input parameters such as logP, ionization state/
extent, size, polar surface area, hydrogen bond donor and
acceptor strength, etc. Since many of the descriptors are
correlated, partial least-squares regression is employed since it
can cope with this and also provide greater interpretability than
commonly used alternatives such as neural networks or en-
semble classification/regression trees.

2.2.1. Human Model Details.The statistical model built on
686 human PPB measurements has a moderater0

2 of 0.56, and
an equivalentr2 since it is a fitted relationship with a slope of
1 and an intercept of 0 (Table 3 and Figure 4a). The
corresponding cross-validatedq2 is approximately the same as
the r0

2 at 0.54, suggesting that the model is not overfitted. The
prediction error as given by the root-mean-square error (RMSE)
is 0.56 log units compared to experimental variability determined
at ∼0.25 log units. The latter value is based on an analysis of
>100 repeat measurements in rat. Given that the standard
deviation in logK for the training set is 0.83, the maximum

Table 3. Model Statistics for the GSK Human, GSK Rat, and Literature Human Modelsa

line of unity statistics line of best fit statistics other statistics

(a) human GSK model r0
2 (q2) RMSE ME r2 slope intercept distance σY N

training data 0.56 (0.54) 0.55 0.00 0.56 1.00 0.00 1.00 0.83 686
test data 0.48 0.54 -0.02 0.58 0.95 0.11 1.00 0.83 211
validation data 0.50 0.57 0.07 0.51 0.97 -0.02 0.93 0.81 385
rat datab 0.17 0.64 0.23 0.44 0.92 -0.12 1.01 0.78 956
literature data 0.03 1.05 0.6 0.34 0.81 -0.41 1.89 1.07 324

(b) human literature model r0
2 (q2) RMSE ME r2 slope intercept distance σY N

training data 0.45 (0.40) 0.83 0.00 0.45 1.00 0.00 1.00 0.92 243
test data 0.46 0.67 0.17 0.51 0.85 0.23 1.02 1.11 82
GSK data 0.29 0.70 0.27 0.42 0.81 0.55 1.75 0.83 1282

(c) rat GSK model r0
2 (q2) RMSE ME r2 slope intercept distance σY N

training data 0.44 (0.43) 0.62 0.00 0.44 1.00 0.00 1.00 0.84 1081
test data 0.47 0.58 -0.05 0.48 1.01 0.04 1.02 0.80 347
test data (blood) 0.38 0.57 -0.09 0.40 0.92 0.17 0.87 0.73 614
validation data 0.51 0.63 -0.11 0.56 1.37 -0.58 1.22 0.89 624

a Line of unity statistics:r0
2 is the correlation coefficient to the line of unity,q2 is the cross validatedr0

2 from a leave many out procedure, RMSE is the
root-mean-square error in prediction and ME is the mean error in prediction. Line of best fit statistics:r2 is Pearson’s correlation coefficient squared, and
the slope and intercept define the line of best fit equation. Other statistics: distance is the average distance of the dataset to the origin of the scores plot
(absolute sum of the t values for all components),σY is the standard deviation of the observations LogK values andN is the total number of observations.
b Human model predicting the non-overlapping subset of rat data also shown.

Figure 3. Relationship between PPB and logD broken down by program (A left & E right). For a number of programs, one can find a strong
correlation with logD alone. The correlation for the program A in the top left is as good as the experimental reproducibility of the assay meaning
logD alone governs the difference in binding.

Figure 4. Plot of observed versus predicted human training (left) and test set (right) results. Red contours represent area of maximum density,
while blue represents the lowest.
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possibler0
2 one could expect is 0.91, meaning the in-silico

model describes∼60% of the explainable variance in the
training set.

The model performance on the randomly chosen test set of
162 compounds is a better guide to the predictivity of the model
than the training set itself since it has not had an influence on
the model-building process. The results show the model is of
moderate strength, and is not overfitted, since the overall
correlation and prediction errors are essentially equivalent in
the two sets (Table 3 and Figure 4b). Since the test set is in
essence a mirror image of the training set due to the random
selection employed here, the comparable average distance to
model is understandable. The distance to model is calculated
to be approximately 1 on average, indicating the test set lies
within the model space. While this distance represents a 1D
representation of the overlap between the datasets, we can see
the same effect in 2D by projecting the compounds into the
PLS component space (Figure 5).

Such a good performance on the test set might be expected
given the observed overlap. However, a sizable discrepancy
between ther0

2 and r2 statistics in the test set is observed
reflecting the fact that the slope and intercept of the line of
best fit deviate from 1 and 0, respectively. Even so, the

prediction error is comparable to the training set with only a
small net overprediction of the data (ME) -0.02).

The 385 compound temporal validation set available to assess
the model is found to have a distance to model of 0.94. This is
less than that of the training set indicating in this case that the
newly synthesized data have not strayed significantly from the
model space as defined and so might be expected to be well
predicted by the model. Ther0

2 for the validation set is found
to be∼0.5, the RMSE has increased only marginally (0.03 log
units) compared to the training set, and the dataset is on average
overpredicted by 0.07 log units. While not the most rigorous
test of the model, the validation set shows the model is quite
robust to newly synthesized data.

Measurements extracted from the literature were then as-
sessed. The results in Table 3 show that the model performs
considerably differently compared to the GSK human model.
The RMSE is dramatically larger at∼1 log unit compared to
∼0.55 log units for the in-house data. This arises as a result of
a 0.60 log unit underprediction of the literature data. This means
the correlation to the line of unity is quite poor, although the
model does have some ranking ability as given by ther2 of
0.34. From an analysis of the PLS scores plot (Figure 5), one
can see that the GSK compounds occupy a significantly different
area of property space compared to the literature set which might
explain the results. Marketed compounds, which predominate
the literature dataset, have considerably lower mean molecular
weights and logP’s than the compounds in the GSK dataset.
Furthermore, acids dominate the literature set, an artifact of the
greater need to report their PPB, even though acids make up a
small portion of drugs.

For 693 compounds with experimental PPB measurements
in both human and rat, we find a moderate correlation between
the values. However, the mean experimental logK is 1.44 log
units in human, 0.11 log units larger than that found in rat. Even
taking into account experimental variability of∼0.25 log units,
the probability of observing such a large difference in the mean
logK values of the two species is statistically highly unlikely
given the number of observations. Applying a paired t-test to
the data shows that this is a significant difference above the
95% confidence level. Furthermore, this finding is in agreement
with the analysis of a similarly sized AstraZeneca dataset by
Gleeson et al., suggesting that this is a real difference between
the species.13

We can therefore use the non-overlapping set of rat measure-
ments to assess the predictive ability of the human model. One
might expect the human model to rank the rat data reasonably
well but not necessarily predict the absolute logK accurately.
Furthermore, since the distance to model for this set will be
comparable to the well-predicted human test and validation set,
one might also expect the model to perform well on the data,
albeit reflecting the experimental differences between species.
The results in Table 3 show that rat data are poorly predicted
by the human model in absolute terms, with anr0

2 of 0.17. The
line of best fit statistics are better (r2 ) 0.44), a result of the
data being underpredicted by an average of 0.23 log units. This
difference is in the correct direction but larger in magnitude
than the experimental differences between species.

Distance to Model versus the Error in Prediction. The
effect of distance to model space for the available independent
datasets was assessed in more detail. The test set data were first
binned into quartiles (four equally sized bins), and the relation-
ship between the distance bin and the error in prediction was
assessed. (Figure 6). The RMSE is found to increase by 0.07
log units going from the closest quartile of the test set to the

Figure 5. Scores plots showing component 1 (t1) versus component
2 (t2) (top) and the corresponding loadings plot (bottom). The distance
to the training set in PLS model space are 0.89 (self-similarity), 0.90,
1.06, 1.68 for the training, test, validation, and literature set, respectively.
Two extreme outliers are found on component 1 having very low logDs
due to their five basic centers (gentamicin & tobramycin). Descriptors
at the extreme ends of the blue line in the loading plot have the greatest
impact on the PLS model and thus the distance. Only the first two
components are displayed as they describe∼80% of the total model
variance.
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second closest. The RMSE actually decreases by 0.04 log units
in the third, but in the final it increases again by 0.13 log units.
Thus, apart from the third bin, the RMSE increases with
increasing distance. This effect appears more pronounced in the
validation set. There is a gradual increase in RMSE with each
distance bin in the validation set, but this begins to plateau once
the third quartile has been reached. The six observations in the
dataset that lie outside the maximum distance of the original
test set are the most poorly predicted of all.

In the literature dataset, we only find 11 observations within
the first-second distance quartiles, and these are much better
predicted than those that lie further away. The majority of the
data lies beyond the third quartile and is predicted with
considerably less accuracy.

To ensure the finding that the RMSE gradually increases with
the distance quartiles, the statistical significance of the relation-
ship was assessed. Using the nonparametric Krustal-Wallis test,
one finds the relationship between the number of compounds
found above the median error increases with the increasing
distance bin for the validation and literature sets, and these are
significant differences above the commonly used 95% confi-
dence level (Figure 7). Those for the test set are only significant
at∼50%. Even considering the relatively weak statistics found
in the latter dataset, these results show that a knowledge of the
domain of applicability can be used to provide information about
the reliability of a prediction. The ability to define the reliability
of a given prediction (i.e., below the RMS model error,
equivalent to, or considerably greater than) means predictions
can be used with more confidence.

2.2.2. Human Literature Model Details.The reliability of
QSAR/QSPR models reported in the literature are often
questioned13,14since they are typically generated on compounds
with markedly different physicochemical properties and were
determined from assays with often distinctly different protocols.
The results from our literature-based models predicting GSK
data are now reported to add further to the debate. The literature
model generated here employed the same theoretical protocols
as the GSK-based models, so any differences are simply a
reflection of the datasets rather than the model-building
methodology used.

The results of the model in fit and prediction are shown in
Table 3. The training setr0

2 obtained from the 243 observations

is 0.45 compared to 0.56 for the GSK model. The latter was
built on 2.5 times the number of datapoints. The literature
model’s q2 also shows greater variability from the cross-
validation procedure than the GSK model and the RMSE is∼0.3
log units higher. These collectively indicate the model is less
predictive.

The independent test set of 82 compounds lies within the
domain of applicability of the model and is moderately well
ranked (r2 ) 0.51), but the logK value is underpredicted by
∼0.17 log units. This means the correlation to the line of unity
is just 0.46. Surprisingly, the test set shows a lower RMSE
compared to the training set (0.67 vs 0.83), but this is still larger
than the GSK model. This could be an artifact of the small
dataset and/or the greater variability in the literature PPB data.

The ability of the literature model to predict the complete
human GSK dataset was assessed next. Analysis of the domain
of applicability indicates this data lies far from the training set
data, suggesting that the data may be poorly predicted. The GSK
dataset is found to be moderately well ranked by the literature
model (r2 ) 0.42), but the net underprediction by 0.27 log units
means ther0

2 is just 0.29. The RMSE is∼0.13 log units higher
than that reported for the GSK model. This seems to confirm
that literature-based models should not be applied blindly
without a consideration of distance to model.13 Even if observa-
tions lie within the domain of applicability of such a model,
the rank order of a set of compounds rather than the absolute
prediction should be used as the prediction errors are likely to
be considerably larger.

The distance to model can only be used in a crude fashion
for the literature model, with those compounds found outside
the literature model space being less likely to be well modeled
than those within. It was not possible to demonstrate a more
precise, statistically significant relationship between the distance
and the error for compounds found within the training set space
as was demonstrated for the human GSK model.

2.2.3. Rat Model Details.The rat dataset is the largest
available to us since this is the most important preclinical species
used in the pharmaceuticals industry. Approximately 4 times
the number of compounds are available to generate a model

Figure 6. Plot of the RMSE of the test, validation, and literature set
using the quartiles associated with the test set. Those compounds that
lie outside the maximum value of the test set are found in the distance
bin (X).

Figure 7. Plot of the absolute error in prediction vs the distance to
model for the literature set binned according to the test set quartile
distances. The Krustal-Wallis ANOVA by ranks test shows differences
in the medians of the literature and validation set to be significant above
the 95% confidence levels. A nonparametric test must be used to assess
the statistical significance as the data are not perfectly normally
distributed. The small square denotes the median, and the rectangular
box denotes the range in which 25-75% of the errors lie.
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compared to the literature based dataset, which may have
implications for the domain of applicability.

The training and test set statistics for the rat model are
reported in Table 3 with a graphical illustration of their
performance in Figure 8. The in-silico model describes 44% of
the variance of the training set and has a cross-validatedq2 of
0.43. This indicates the model is robust even if only moderately
predictive. The RMSE of the model is 0.62 log units, larger
than the human GSK model but less than the literature human
model. The independent test set is predicted to an equivalent
degree of accuracy, having anr0

2 of 0.47 and an RMSE of 0.58.
The mean error in prediction is small at-0.05 log units.

The 614 blood-based protein binding measurements are
overpredicted to a greater extent than the plasma test set (ME
) -0.09), potentially exacerbated by experimental differences.
The dataset is ranked with moderate accuracy (r2 ) 0.40), and
the RMSE is essentially equivalent to the test set. The average
distance to model of the blood data is just 0.87, indicating that
it lies well with the training set.

The temporal validation set displays a markedly different
distance to model distribution, lying further from the training
set compared to the randomly partitioned test set (1.02 vs 1.22).
The dataset is predicted well (r0

2 ) 0.51), although this larger
r0

2 is somewhat a reflection of the larger variance in the dataset.
The prediction error is comparable to that of the training set
(0.63 log units), but the data are also underpredicted by-0.11
log units on average. Collectively, the results on the independent
test and validation sets indicate that rat data are predicted with
a lower accuracy than are human data. Furthermore, no human
data were available to assess this model as all the compounds
measured in human have also been measured in rat.

No statistically significant relationship could be demonstrated
between the distance and the error. This may be a result of the
larger dataset making the model more stable or the fact that the
datasets used to assess the effect are not diverse enough to stress
the model. This is not necessarily a problem, potentially meaning
the model is more generalizable.

2.2.4. Model Performance by Individual Program Series.
In-silico models built on diverse, global datasets can have
considerable performance differences on the individual programs
or series of compounds found within the global model. In this
section, a consideration of how successfully programs from the
rat test and validation set are predicted by the global model.
This analysis was limited to the rat model due to the larger
number of observations. The best predicted programs where
the number of observations was greater than 10 were
assessed so as to ensure statistically meaningful results could
be obtained (Table 4 and Figure 9). All correlations discussed
are statistically significant.

The nine programs in Table 4 display lower RMSEs than
those found for the global test/validation sets. This also means
that a similar number of programs are correspondingly more
poorly predicted than the global model RMSE. In terms of the
rank ordering ability of the models, this is heavily dependent
on the variance in the individual programs being assessed, which
can range from between 0.47 log units to 0.84 log units
(Figure 10). Programs 1, 2, and 4 for example are well predicted
by the model, displaying highr2 values and low RMSEs,
indicating the rank ordering of the compounds are strong and
the logK prediction is accurate. However, program 2 is
underpredicted by 0.15 log units resulting in a weaker correlation
to the line of unity. Programs 3, 5, and 6 in contrast are the
most poorly ranked programs (r2 e 0.35), but they still have
some of the lowest RMSEs of the nine programs, and lower
RMSEs than the global model overall. In these cases, the
variability in the experimental logK values are low. Programs
7-9 are also well ranked by the model as can be seen from
Figure 10 and from a consideration of the line of best fit statistics
(r2s > 0.67), even though the RMSE approaches that of the
global test set. This means the larger2 is simply a result of the
large variance in the data itself and it is not that the logK values
are accurately predicted. In fact, these three programs generally
have the largest mean errors of all the program series in
Table 4.

The program predictions of global, multivariate in-silico
models do not generally approach the experimental error of the
particular assay, in contrast with the QSPRs shown earlier for
logD alone (Table 2). In the latter cases, a single binding mode
is likely so that the differences in a single parameter alone, such
as lipophilicity, reflect the affinity changes. The deficiency of
multivariate QSPR models is that they can cloud what may be
a relatively simple relationship for the series as they take into
account features in the molecules even if they are not important
for the binding mode in question. This is because a multivariate
model assigns a single coefficient to each model descriptor, yet
as can be seen from Table 2 each program studied has a
distinctly different dependency on logD. An individual pro-

Figure 8. Plot of observed versus predicted rat training (left) and test set (right) results. Red contours represent area of maximum density while
blue represents the lowest.

Table 4. Rat Model Performance for the Most Populated Program
Series in the Test Set

program r2 r0
2 RMSE ME σY N

1 0.64 0.62 0.28 0.04 0.47 13
2 0.61 0.46 0.35 0.15 0.49 21
3 0.24 0.16 0.42 0.08 0.47 23
4 0.68 0.62 0.43 -0.01 0.71 23
5 0.35 0.31 0.45 -0.09 0.56 15
6 0.29 0.27 0.49 -0.05 0.58 37
7 0.71 0.52 0.51 -0.20 0.75 28
8 0.67 0.49 0.56 0.10 0.82 12
9 0.82 0.52 0.56 -0.11 0.84 11
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gram’s dependency on acidity, basicity, or size might also be
expected to differ in a similar way making the global model
useful but not the optimal solution. However, in the absence of
any experimental data the most accurate in-silico model possible
is crucial.

Programs within GSK demonstrating a need for greater
understanding of PPB may get dedicated computational chem-
istry support to allow the generation of a local multivariate
model, initially using the globally identified descriptors. By
essentially reparameterising the global models for individual
programs one can often more effectively describe the program
data. This however limits the domain of applicability of the
model to a particular program only.

2.3. Model Limitations: Experimental Determination vs
In-Silico Prediction. It is important one takes into account the
model error before any prediction should be used. If one uses
the human or rat PPB model in continuous prediction one
expects that∼70% of the time compounds will be predicted
within the limits given by the red line in Figure 10. These were
calculated by back extrapolating from the logK value and the

known model errors. The corresponding blue lines represent
the experimental error.

Figure 10 clearly illustrates the relative performances of the
two methodologies, the experimental value being considerably
tighter than the in-silico prediction. If one wished to know
whether a compound had a %boundg99% from the in-silico
models, a predicted %bound of 95% for example would mean
that it is highly likely that the actual value is<99% given the
RMSE of the model. This is because one can be∼70% sure
the experimental value would lie between 86.0 and 98.4% based
on the model errors. This compares to an∼70% confidence
range between 92.3 and 96.8% bound for the experimental assay.
Thus, while this model may not be predictive enough to
differentiate the subtle changes required in lead optimization
programs, it could be used to rank virtual possibilities.

As a further illustration of the utility of the in-silico models,
the performance of the human in-silico model in predicting
experimental human binding data was compared to a prediction
using experimental values determined in rat alone. Using the
absolute rat logK value as a prediction will mean the human

Figure 9. Global rat model prediction by program. The black dashed line indicates the line of unity, the solid red line indicates the regression line,
and the dashed blue lines are the 95% confidences in the regression line.

Figure 10. In-silico and experimental errors associated with a given %bound prediction at the 68% confidence level (based on 1 standard deviation
of the error - RMSE). The graph to the left describes the 50-100% bound range, and the one to the right shows the more important 90-100%
bound range.
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data are underpredicted by∼0.2 log units with an RMSE of
0.60 log units (Table 5). The rank ordering of the human data
is moderate with anr2 of 0.48. However, it is apparent from
Figure 11 that the slope and intercept of the line of best fit
deviate significantly from 1 and 0, respectively. The regression
equation was subsequently used to correct the experimental rat
data to give an optimal human prediction. This best case scenario
prediction now has a slope and intercept of 1 and 0, and the
RMSE has decreased to 0.52 log units. This however is still
considerably larger than the experimental reproducibility of the
assay (0.25 log units). Furthermore, the RMSE of the in-silico
human model is∼0.55 log units, suggesting using experimental
rat data to predict human is no better than the in-silico model
built on that species.

2.4. Model Descriptors.We find that three independent in-
silico models arrive at similar conclusions regarding the
physicochemical factors that control PPB even though they are
derived using different training sets and species. The descriptor
coefficients of the PLS models, computed as the sum of the
influences on each of the fitted components, are displayed in
Figure 12. The key descriptor types identified by the model are
lipophilicity, size, and charge type/extent of ionization. Size/
lipophilicity descriptors are grouped together as they are not
totally independent from each other on the PLS loadings plots
which can be seen in Figure 5 for the human model built on
GSK data. For each of the three models generated here
increasing the lipophilicity or conversely decreasing the polarity
of compounds generally leads to increasing PPB. Addition of
an acidic group or decreasing the acidic pKa generally leads to
increasing binding, while addition of a basic group or an
increasingly basic pKa generally leads to decreasing binding.
These results are in agreement with the earlier uni-variate
analyses.

3.0. Conclusions

The results presented herein clearly illustrate the physico-
chemical determinants of PPB. PPB increases with both
increasing lipophilicity and increasing acidity/number of acidic
groups. Addition of a basic center or increasing the basic pKa
of a molecule will decrease the extent of binding.

In-silico models have been generated on two species, rat and
human, and will allow us to effectively rank virtual compounds.

Table 5. Model Statistics for Rat Data Predicting Human (a) Using the
Absolute Prediction Untransformed and (b) Using the Line of Best Fit to
Transform the Rat LogK Valuesa

expt rat predicting
expt human r0

2 RMSE ME slope intercept N

(a) absolute 0.48 0.60 0.22 0.76 0.58 584
(b) regression line 0.62 0.52 0.00 1.00 0.00 584

a Data sorted based on increasing prediction error.

Figure 11. Plot of experimental human logK versus rat. The black
line represents the line of unity, and the red line represents the line of
best fit. Red contours represent area of maximum density, while blue
represents the lowest. The majority of the data lie above the line of
unity as a result of the generally greater binding in humans compared
to rat.

Figure 12. Human (top), literature human (center) and rat PLS model
coefficients plot (centered & scaled). Descriptors are colored according
to their generic type. Red (acid), Blue (base), size/lipophilicity (black),
polar (pink), and others (gray). The models fitted, 4, 2, and 4
components, respectively.
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Furthermore, these models can predict the extent of PPB with
the same accuracy as an extrapolation from one species to
another. Should a program series be poorly predicted by the
global model it is possible to generate more accurate predictions
by either re-parametrizing the global model or using correlations
derived from individual parameters such as logP.

It is important to consider the extent of overlap in chemical
space between the compounds used to train the model and those
being predicted. This has implications for models built on
limited literature datasets which are then to be applied to
different chemotypes types or vice versa.

4.0. Experimental Procedures

A dataset consisting of∼1500 compounds with equilibrium
dialysis (ED), plasma protein binding (PPB) measurements in rat,
and∼900 compounds with measurements in human were randomly
split into training (∼75%) and test (∼25%) sets. To test the rat
model, 614 ED blood protein binding measurements were available.
Generally, blood based data show a good correlation with that
derived in plasma, although cases do exist where quite dramatic
differences can be found. For test purposes, a human literature
dataset of∼400 compounds was taken from Yamazaki et al.8

Following the completion of the model building exercise, 6 months
of further data were compiled to provide a final, more rigorous
temporal validation set.

To assess the predictive ability of our in-house in-silico models
compared to one built on a diverse external dataset, a third model
was built on the literature dataset extracted.8 Of the ∼400
compounds reported, 327 remained after structures were obtained
and descriptors were calculated. This dataset was partitioned into
a training and test set in the same way as the in-house datasets.
The predictive ability of this model was subsequently assessed using
all of the available in-house human data.

It is important to emphasize the need to normalize the PPB data
as commonly reported, before any statistical analysis of the data is
performed. The PPB fraction unbound value (fup) or % data
required normalization for two reasons. First, analysis of the
replicate errors from compounds with multiple measurements shows
that the experimental error is not linear across the range, and second,
the distribution of the observations is heavily skewed on the fup
or % scale (Figure 13a,b). This makes the construction of linear
free energy relationships with regression based methods unsuitable.
Transformation of the fup into a pseudo equilibrium constant (eq
3), referred to as logK henceforth, leads to a response value with
an even distribution of the experimental error across the transformed
response range. The observations are now also normally distributed
across the response range making regression based methods more
reliable (Figure 13c,d).

The %bound, rather than the more appropriate logK value, has been
used in a number of statistical models.9,15 The performance of the
model by Yamakazi et al.,8 while computed as a logK, was reported
with statistics based on the %bound, giving artificially inflatedr2

values.
To relate structure to our response values in a way that would

be more intuitive to a typical medicinal chemist, the analyses here
are limited to a small but comprehensive set of descriptors that
describe key bulk property characteristics of molecules that are
known to influence almost all DMPK properties. These include
lipophilicity at a number of pHs (ACD logD/P16), the extent of
ionization at pH7.417 (ACD pKa), ionization state indicators, polar
surface area,18 hydrogen bond donor/acceptor indicators and estima-
tions of their strength (Abraham et al.19), Andrews binding energy,20

calculated molar refractivity,21 etc. (Table 1). Compounds with

Figure 13. (a-d) Plot of the distribution of untransformed rat PPB data (a) and transformed response ranges (c) and plots of replicate compound
measurements on different dates using the untransformed (b) and transformed response values (d). Analysis of the residuals from (b) shows the
residuals increase with increasing %free in contrast to (d). Rat equilibrium dialysis, plasma data,N ) 110.

logK ) log(1 - fup
fup ) (3)
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missing descriptor values were excluded from the analysis as were
compounds that were extreme outliers in any of the descriptors.

4.1. Univariate Data Analysis.An initial assessment was made
of the larger set of 1435 GSK compounds measured in rat plasma
to discover how the extent of PPB was affected by the two key
molecular characteristics often quoted in the literature, namely,
lipophilicity and the type/extent of ionization. Analysis of variance
(ANOVA) was used to test whether the mean logK values of the
four different ionization types22 (acid, base, neutral, and zwitterions)
and/or three equally populated logP bins (<3, 3-5, >5), had
significantly different logK values. Consideration of relatively
simple, but interpretable, statistical methodologies such as ANOVA
is often overlooked in the literature even though these offer clear
advantages in terms of interpretability and the opportunity to
rationalize simple rules. The relationship between the extent of
binding and logP for each of the individual ionization classes was
also assessed using linear regression. The extent of the correlation
between logK and logP was then assessed by individual program
series. All analyses were performed in Statistica 7.0.23

4.2. Multivariate Data Analysis. To provide GSK scientists with
a means to estimate the extent of protein binding, PLS regression
models were generated using the two human and the single rat
dataset and∼40 physicochemical descriptors (Table 1). PLS24-26

is a least-squares regression technique that (1) assumes a linear
relationship between the dependent and independent variables and
(2) projects correlated variables in multidimensional descriptor space
to lower dimensions. PLS models were initially built in GOLPE27

fitting four components optimally based on the ratio of ther2/q2.
Variable reduction was achieved using one round of D-optimal
design (30% of redundant variables removed) followed by fractional
factorial selection. The models were manually refined further within
SIMCA P1028 using the PLS loadings plots. Descriptors were
manually removed if they had minimal influence on the first two
components.

To determine if the model could have occurred by chance
Y-randomization trials of the training set matrix were performed
within SIMCA. A total of 700 training sets were randomly generated
by scrambling the logK values, and the models were rebuilt. In all
cases, the randomized models had negativeq2 and r2 values no
greater than 0.1, implying that the real PLS models are considerably
better than random. Plots of observed versus predicted values were
produced in JMP 5.1.29

The distance of a compound j to the training set space was
assessed using the components that define the PLS models. The
distance of a compound to the training set is computed as sum of
the absolute products of theZ scaled and centered descriptors (c)
multiplied by their corresponding PLS weights (w), over each of
the N principal components of the model in question (eq 4). The
distance is then normalized by dividing the average distance of the
dataset in question by the average of the training set compounds’
distances. This means a test or validation set with an average
distance less than 1 lies within the model set space and far outside
if much greater than 1.

The relationship between the distance and the errors was assessed
by binning the test set into quartiles before assessing whether the
RMSE increased with increasing distance. Since the absolute errors
of bin are not normally distributed (the absolute errors follow an
exponential distribution compared to the normally distributed
errors), it is not possible to assess the statistical significance of the
mean values of the bins using parametric statistics such as ANOVA.
Thus, a nonparametric test (Kruskal-Wallis ANOVA) was em-
ployed.30 This test assesses whether the frequency of compounds
found above the median of the dataset increases as one moves from
the first to the fourth quartile. The chi statistic is then used to
quantify the statistical significance of the relationship.

4.3. Validation Statistics.The coefficient of determination (r0
2)

is used as the primary measure to estimate the fraction of the total

sum of square variance explained by the model (i.e., correlation to
the line of unity). It has been rearranged from the more commonly
used equation so that it can be expressed in terms of the root-mean-
square error and the variance of the observed value.31 Often,
predictions of a dataset may give rise to a lowr0

2 even though the
model may be useful to rank order compounds in that set. In such
cases, the slope and intercept of the line of best fit deviate from 1
and 0, respectively, and it is useful to evaluate the Pearson product
moment correlation coefficient (r2). The root-mean-square error in
prediction (RMSE) is also calculated as this can be directly related
back to the known experimental errors. The mean error in prediction
(ME) indicates whether a model experiences an over- or under-
prediction. The cross-validatedq2 is reported, calculated in SIMCA-
P10 by generating seven different models, each by leaving 1/7 of
the data out each time. Finally, the maximum possibler0

2/r2 was
estimated by substituting the experimental error (∼0.25 log units)
into eq 5 rather than the in-silico RMSE.

The r0
2, r2, RMSE, and ME are calculated using eqs 5-8,

respectively, wherex andy are predicted and observed values of
the biological response,n is the number of compounds, andσY is
the standard deviation of they values. The normal probability plots
of the quoted statistical values have been visually assessed to ensure
their validity.

Supporting Information Available: A table with the observed
and predicted values for the literature model generated herein. This
material is available free of charge via the Internet at http://
pubs.acs.org.
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